Table 3. Bond distances and angles with three times the standard deviations

	Distance		Distance
$\mathrm{P}-\ldots \mathrm{Br}(1)$	$2 \cdot 16 \pm 0.02 \AA$	$\mathrm{Br}-\mathrm{Br}(1)$	$3 \cdot 12 \pm 0.02 \AA$
$\mathrm{P}-\ldots \mathrm{Br}(2)$	$2 \cdot 13 \pm 0.03$	$\mathrm{Br}^{-}-\mathrm{Br}(2)$	$3 \cdot 19 \pm 0.02$
$\mathrm{P}-\ldots \mathrm{Br}(3)$	$2 \cdot 17 \pm 0.03$	$\mathrm{Br}^{-}-\mathrm{Br}(3)$	3.06 ± 0.02
			Angle
$\mathrm{Br}(1)-\mathrm{Br}(3)$	$3 \cdot 54 \pm 0 \cdot 02$	$\mathrm{Br}(1)-\mathrm{P}-\mathrm{Br}(2)$	$110.0 \pm 1.0^{\circ}$
$\mathrm{Br}(1)-\mathrm{Br}(2)$	3.51 ± 0.02	$\mathrm{Br}(1)-\mathrm{P}-\mathrm{Br}(1)$	$107 \cdot 9 \pm 1 \cdot 6$
$\mathrm{Br}(1)-\mathrm{Br}(1)$	3.49 ± 0.02	$\mathrm{Br}(1)-\mathrm{P}-\mathrm{Br}(3)$	$109 \cdot 8 \pm 1 \cdot 0$
$\mathrm{Br}(2)-\mathrm{Br}(3)$	$3 \cdot 50 \pm 0 \cdot 02$	$\mathrm{Br}(2)-\mathrm{P}-\mathrm{Br}(3)$	109.2 ± 1.6

with individual isotropic temperature factors. A further decrease to 15.5 occurred after removing 20 reflexions probably affected by extinction. A final value of $R=12.4$ was obtained in three cycles using anisotropic temperature factors.

Final positional parameters are given in Table 1 and vibration parameters in Table 2.

Discussion

According to the results in Table 3 the $\mathrm{P}-\mathrm{Br}$ distances are equal and the angles are very near the tetrahedral value. All deviations are within three times the standard deviation.

Every Br^{-}ion is surrounded by four Br atoms each belonging to a different PBr_{4}^{+}unit, with distances much smaller than the van der Waals separations.

We wish to thank Professor H. Gerding for his interest and support during this refinement, Mr A. Kreuger (Laboratory of Crystallography, Amsterdam) for taking the photographs and collecting the intensities and Mr J.C. Eikelenboom for his help and advice during the absorption correction.

References

Driel, M. van \& MacGillavry, C. H. (1941). Rec. Trav. Chim. Pays Bas, 60, 869.
Eikelenboom, J. C. (1970). Groningen: Program based on those of Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180 and Wells, M. (1960). Acta Cryst. 13, 722.
International Tables for X-ray Crystallography (1962). Vol. III, Table 3.3.1A. Birmingham: Kynoch Press.
Powell, H. M. \& Clark, D. (1940). Nature, Lond. 145, 971. Rutten-Keulemans, E. W. M. (1966). Acta Cryst. 21, A293.

Acta Cryst. (1970). B26, 444

Automatic heavy-atom analysis of some organic compounds. By H. Koyama, Shionogi Research Laboratory, Shionogi \& Co. Ltd., Fukushima-ku, Osaka, Japan, and K. Okada and C. Itoh, Electronic Computing Service Co. Ltd., Honcho, Nihonbashi, Chuo-ku, Tokyo, Japan
(Received 14 October 1969 and in revised form 24 November 1969)

A computer program $S E A R C H E R$ for automatic structure analysis of organic compounds containing a heavy atom is described. From the automatic diffractometer data the computer determines the position of all atoms starting from the heavy-atom position without any chemical assumption.

A computer program $S E A R C H E R$ has been written for automatic structure analysis of organic compounds, each containing one heavy-atom. It is intended for use by organic chemists rather than professional crystallographers.
The program is written mostly in FORTRAN-63 for the CDC 3600 computer and consists of several crystallographic routines. When the heavy-atom coordinates are weighted the program carries out the sequence of calculations listed in Fig. 1. The first part (part A) of this program selects from the list of peak positions a set of atomic sites to be included in the subsequent Fourier calculations. The coordinates and peak height of the centre of a Fourier peak are calculated, by use of a suitable second-order polynomial, from twenty-seven values in three neighbouring sections of the three-dimensional electron density distribution. The second part (part B) of the program selects, from the peak
positions picked up in A, a set of atomic sites to be inserted in the next cycle of SEARCHER. Selection of the atomic sites in A is based on 'reasonable' interatomic distances ($1 \cdot 1-1 \cdot 7 \AA$) between neighbouring light-atom peaks, and that of the atomic sites in B is based on the temperature factor only. The process can be recycled until all the atoms of the molecule are located. The output of SEARCHER is a projection of the molecules in a unit cell along one of the crystal axes ($1 \AA=2.5 \mathrm{~cm}$). At the initial stage, all light atoms are treated as carbon atoms $(B=3 \cdot 5)$ in the structurefactor calculations. The program will solve structures based on all the triclinic, monoclinic, and orthorhombic space groups.

By the SEARCHER program, the crystal structures of the seven organic compounds listed in Table 1 have been successfully solved. The crystal data and the experimental details are also given in the Table.

The structure of $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{Br}$ (I) was easily solved by this program after interpretation of the Patterson map, and
the machine time was only about 1.49 hr . The crystal structure of $\mathrm{C}_{31} \mathrm{H}_{51} \mathrm{O}_{2} \mathrm{Br}(\mathrm{V})$, which had spurious peaks due to

Fig. 1. An outline of the procedures adopted in the analysis of the structure. Notation: NSF=Number of input atoms for the structure factor calculation, NLS = Maximum NSF, NLH $=$ Number of additional atoms for the next structure factor calculation, $\mathrm{NO}=$ Number of eliminated atoms ($B>10 \cdot 0$) for the next least-squares calculation.
Table 1. Examples of the automatic heavy-atom analysis of some organic compounds

癸 (IV)
$\mathrm{C}_{1} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{~N} \cdot \mathrm{HBr}$ 406.3
$\mathrm{P}_{2} 2_{1} 2_{1}$
4
17.781
8.786
11.859
-
1852.7
1.440
1.455
structure-
unknown

(III)
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{3} \mathrm{~S}$
379.3
$\mathrm{C} 2 / \mathrm{c}$
8
23.453
8.977
16.338
$112^{\circ} 38^{\prime}$
3174.7
1.582
1.588
molecular-
conformation
259.0^{ch}
full-matrix
$28^{\text {atoms }} \quad 65.5^{\mathrm{ch}} \quad 12^{\text {atoms }}$
 $149.0^{\text {ch }}$
full-matrix
all aniso.
0.053
2117

$M o-K_{a}$
$\theta \leqslant 27.5^{\circ}$
$\omega / 2 \theta$
Zr

$$
\begin{aligned}
& \text { (II) } \\
& \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{Br} \\
& 267.1 \\
& \mathrm{P}_{2} 2_{1} 2_{1} \\
& 4 \\
& 8.264 \\
& 6.148 \\
& 21.465 \\
& \quad- \\
& 1090.6 \\
& 1.599 \\
& 1.626 \\
& \text { molecular- } \\
& \text { conformation }
\end{aligned}
$$

$$
\begin{gathered}
62.0 \\
483.5^{\mathrm{ch}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { full-matrix } \\
& \text { all aniso. }
\end{aligned}
$$

\circ
$\stackrel{\circ}{\hat{0}}$
$\overline{0}$
$\overline{0}$

$\stackrel{8}{8} \stackrel{m}{0}$

$149.0^{\text {ch }}$

$$
1436
$$

$$
\begin{aligned}
& \mathrm{Mo}_{0}-\mathrm{K}_{a} \\
& \theta \leqslant 27.5 \\
& \omega / 2 \theta \\
& Z r
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \sim \\
& \stackrel{\sim}{1} \\
& \dot{\gamma}
\end{aligned}
$$
\]

pseudosymmetry in the electron density distribution, was also solved without any human intervention after four cycles, taking 9.3 hr .

The seven organic compounds which were solved by this program contain up to 60 atoms in one asymmetric unit. The use of this program will become more convenient by
the advent of machines (CDC 6600) with computing times in the nanosecond range. A more detailed description of the method will be published elsewhere.

We thank Professors Y. Okaya, Y. Iitaka and T. Ashida, and Dr T. Sakurai for their computer programs.

Acta Cryst. (1970). B26, 447
Cell dimensions of rare earth orthorhodites. By R. D. Shannon, Central Research Department, E.I. du Pont de Nemours \& Company, Experimental Station, Wilmington, Delaware 19898, U.S.A.
(Received 29 September 1969)
The cell dimensions of the perovskites, $\mathrm{MRhO}_{3}(\mathrm{M}=\mathrm{Lu}, \mathrm{Tm}, \mathrm{Er}, \mathrm{Ho}, \mathrm{Dy}, \mathrm{Tb}, \mathrm{Gd}, \mathrm{Eu}, \mathrm{Sm}, \mathrm{Nd}$ and Pr$)$, have been determined from X-ray data.

Marezio, Remeika \& Dernier (1968) and Eibschütz (1965) have recently shown for the rare earth orthogallates and orthoferrites, respectively, the variation in cell dimensions
as a function of atomic number of the rare earth ion. The a and c parameters decrease smoothly with atomic number whereas the b parameter goes through a maximum at Gd.

Table 1. Cell dimensions of the perovskites MRhO_{3}

Compound	a	b	c	V
LuRhO_{3}	$5 \cdot 1861 \pm 2 \AA$	$5 \cdot 6700 \pm 2 \AA$	$7 \cdot 5125 \pm 3 \AA$	$220 \cdot 9 \AA^{3}$
TmRhO_{3}	$5 \cdot 2028 \pm 5$	$5 \cdot 6974 \pm 5$	$7 \cdot 5428 \pm 8$	$223 \cdot 6$
ErRhO_{3}	$5 \cdot 2160 \pm 2$	$5 \cdot 7117 \pm 2$	$7 \cdot 5610 \pm 4$	$225 \cdot 3$
HoRhO_{3}	$5 \cdot 2299 \pm 4$	$5 \cdot 7257 \pm 5$	$7 \cdot 5823 \pm 7$	$227 \cdot 0$
DyRhO_{3}	$5 \cdot 2449 \pm 4$	$5 \cdot 7314 \pm 5$	$7 \cdot 6002 \pm 7$	$228 \cdot 5$
TbRhO_{3}	$5 \cdot 2541 \pm 4$	$5 \cdot 7492 \pm 4$	$7 \cdot 6226 \pm 6$	$230 \cdot 3$
GdRhO_{3}	$5 \cdot 2774 \pm 4$	$5 \cdot 7605 \pm 4$	$7 \cdot 6584 \pm 5$	$232 \cdot 8$
EuRhO_{3}	$5 \cdot 2985 \pm 6$	$5 \cdot 7607 \pm 6$	$7 \cdot 6802 \pm 8$	$234 \cdot 4$
SmRhO_{3}	$5 \cdot 3211 \pm 3$	$5 \cdot 7613 \pm 3$	$7 \cdot 7083 \pm 4$	$236 \cdot 3$
NdRhO_{3}	$5 \cdot 3778 \pm 6$	$5 \cdot 7551 \pm 6$	$7 \cdot 7745 \pm 9$	$240 \cdot 6$
PrRhO_{3}	$5 \cdot 4143 \pm 2$	$5 \cdot 7473 \pm 2$	$7 \cdot 8026 \pm 3$	$242 \cdot 8$

Fig. 1. Cell dimension of MRhO_{3} perovskites $v s$. the effective ionic radius of M^{3+}.

[^0]: (V) Adiantol B bromoacetate
 (VI) Isozygosporin A mono-p-bromobenzoate
 (VII) Silver polyetherin A

